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Abstract

We present molecular dynamics calculations of the thermal conductivity and viscosities of a

model colloidal suspension with colloidal particles roughly one order of magnitude larger than the

suspending liquid molecules. The results are compared with estimates based on the Enskog trans-

port theory and effective medium theories for thermal and viscous transport. We also discuss the

consequences of these results to some proposed mechanisms for thermal conduction in nanocolloidal

suspensions.
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Liquid suspensions of solid particles (colloids) are widely encountered in biology, industry

and many natural processes. In addition to their relevance for numerous practical appli-

cations they have emerged as a useful paradigm for the study of phase transitions, from

crystal nucleation and growth to gelation [1]. Colloids have not only interesting thermody-

namic properties, but remarkable rheological properties as well [2] and very complex flow

behavior [3]. When the suspended particles are only one to two orders of magnitude larger

than typical liquid molecules, i.e. in the nanometer domain, colloids may exhibit entirely

new properties [4, 5] that are expected to have important technological consequences. A

theoretically important and practically relevant class of colloids consists of suspensions of

spherical colloidal particles with interactions dominated by excluded volume effects. In the

following we employ molecular dynamics simulations to calculate the thermal conductivity

and viscosities (shear and bulk) of fairly dilute colloidal suspensions modeled as mixtures

of strongly asymmetric particles interacting through short range repulsive potentials. We

discuss the results in the light of theoretical estimates based on microscopic and macroscopic

pictures of the system. Despite the simplicity of the model the conclusions should provide,

inter alia, some guidance on the expected transport properties of dilute suspensions of nano-

sized particles, particularly the thermal conductivity, which has been the subject of some

speculation [5–7].

The model that we study consists of two types of particles, 1 - solvent and 2 - colloid, with

masses m1 ≡ m and m2 ≡ mc. The interaction potentials between the particles are based

on the inverse-12, ’soft sphere’ potential, whose properties have been well studied [8, 9]

u(r) = ε
(σ

r

)12

(1)

and which we truncate and shift at r/σ = 2; we also define u(r) = ∞ for r < 0. The

interactions are:

u11(r) = u(r) (2)

u12(r) = u(r − Rc) (3)

u22(r) = u(r − 2Rc) (4)

Similar interactions, that take into account the ’size’ of the colloidal particles by introducing

a ’hard core radius’ Rc, have been employed before to model suspensions [10, 11]. For

temperatures kBT ' ε the effective diameters corresponding to the above interactions should

2



be well approximated by σ1 = σ, σ12 = Rc + σ, and σ2 ≡ σc = 2Rc + σ, and satisfy

σ12 = (σ1 + σ2)/2. In the following we will therefore quote as relevant quantities the

’diameter’ ratio of the colloid and solvent particles, σc/σ, and the ’volume fractions’ of

the colloidal particles, φc = πncσc
3/6, and the solvent, φ = πnσ3/6; nc and n are the

corresponding number densities, nc = Nc/V , n = N/V . All the simulations presented here

were performed in the microcanonical (NVE) ensemble with the average temperature set to

kBT = ε.

The systems (mixtures) that we studied are summarized in Table 1, and correspond to

two ’diameter’ ratios, each with two mass ratios. Since for a realistic colloidal particle the

ratio of its mass to that of a fluid molecule is mc/m ∼ (σc/σ)3, our perhaps most practically

relevant results correspond to mc/m = 1000. However, we also analyzed the effect of a much

smaller mass ratio, mc/m = 1. The volume fractions φc of the colloidal particles have been

chosen low enough so that the system is rather dilute, but high enough so that a reasonable

number of colloidal particles can be simulated without the need for a prohibitively large

number of solvent particles. (Nevertheless, N is rather large, of the order 105.) The pairs

φ and φc for the two different diameter ratios have been chosen to yield the same system

pressure p0, corresponding to a pure solvent at n0σ
3 = 0.8 (φ0 = 0.419). Incidentally, we

have found that this can be accomplished with very good precision (better than 1%) by

using the scaling relation:

p(σ, σc, φ, φc)

p0(σ, φ0)
=

pMCSL(σ, σc, φ, φc)

pCS(σ, φ0)
(5)

where p is the system pressure, pBMCSL the Boubĺık-Mansoori-Carnahan-Starling-Leland

equation of state pressure of a hard-sphere mixture [12, 13] and pCS the Carnahan-Starling

equation of state pressure of the hard-sphere liquid [14]. The choice of a common pressure

allows an unambiguous comparison of the thermal conductivity and viscosities of the sus-

pension with that of the reference system (pure solvent at pressure p0), is implicitly assumed

by theories relying on macroscopic scale arguments (see below), and should also correspond

to the usual experimental situations.

The calculation of the viscosities (shear and bulk) and thermal conductivity can be done in

molecular dynamics simulations using the Green-Kubo relations, which express these linear

transport coefficients as time integrals of auto-correlation functions of microscopic currents

[15–17]. This formalism yields unambiguous definitions for the shear and bulk viscosities,
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applicable to both single fluids and mixtures:

η(t) =
1

6V kBT

∫ t

0

〈

3
∑

α,β=1;α6=β

σαβ(0)σαβ(τ)〉dτ (6a)

ζ(t) =
1

9V kBT

∫ t

0

〈

3
∑

α,β=1

[σαα(0) − p][σββ(τ) − p]〉dτ (6b)

where σ̂ is the microscopic stress tensor:

σαβ(τ) =
∑

i

[miviα(τ)viβ(τ) + Fiα(τ)riβ(τ)] (7)

(α, β = x, y, z), p is the pressure, and the viscosities η and ζ are given by the t → ∞ limits

of the above relations.

The treatment of thermal transport in mixtures on the other hand is more complicated

due to the coupling of energy and mass transport [17]. Since this is an important but many

times confusing issue we discuss it briefly below for the present case of a binary mixture

(see also the discussion in [18]). The hydrodynamic equations for a binary mixture express

species conservation, as well as momentum and entropy transport:

∂ρa

∂t
+ ∇ · (ρava) = 0 (8a)

ρ
∂v

∂t
+ ρv · ∇v = −∇ · P (8b)

ρ
∂s

∂t
+ ρv · ∇s = −∇ · Js + Θ (8c)

In the above equations ρa and va (a = 1, 2) are the (position and time dependent) mass

densities and flow velocities of the two species, respectively; ρ is the total mass density,

ρ = ρ1 + ρ2; v is the center of mass (“barycentric”) velocity, v = ρ−1(ρ1v1 + ρ2v2); P̂ is the

stress tensor, Pαβ = pδαβ − P ′αβ, with p hydrostatic pressure and P̂′ viscous stress tensor,

P ′αβ = [η(∂vα/∂xβ +∂vβ/∂xα)+(ζ−2η/3)∇·vδαβ]; s is the entropy density, Js the entropy

current and Θ the entropy production. The entropy current Js is expressed in terms of heat

- Jq, and mass diffusion - Ja, currents:

Js =
1

T
[Jq − (µ1J1 + µ2J2)] (9a)

Jq = Je − (ρev + P · v) (9b)

Ja = ρa(va − v) (9c)
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, with µa chemical potential (per unit mass), e total specific energy and Je the corresponding

energy current. In the framework of non-equilibrium thermodynamics [17] the heat and mass

currents (denoted as the set {Jδ}) are connected to thermodynamic forces {Xδ} by heat-mass

linear transport coefficients {Lδγ}, (δ, γ = 1, 2, q):

Jδ =
∑

γ

LδγXγ (10)

The entropy production Θ contains independent contributions from ’vectorial’ phenomena

(heat and mass transport) - Θv and ’tensorial’ ones (momentum transport) - Θt , Θ = Θv+Θt .

Both contributions assume the Onsager form, i.e. for heat-mass processes:

Θv =
1

T

∑

δ

Jδ · Xδ (11)

while Θt = (1/T )P̂′ : ∇v. The Onsager reciprocity relations, Lδγ = Lγδ, along with

J1 + J2 = 0 from the definition of the diffusion currents leave 3 independent heat-mass

transport coefficients for a binary mixture, {L12, L1q, Lqq}, with the currents now written as

J1 = −L12(X1 − X2) + L1qXq (12a)

Jq = L1q(X1 − X2) + LqqXq (12b)

Three distinct sets of currents and thermodynamic forces have been discussed in detail

[17, 18], each with different transport coefficients. The currents (and forces) of different

sets are connected by linear transformations under which Θv is invariant and preserves its

Onsager form. This leads to well defined and useful relations between the coefficients [18].

We would like to point out that one such relation can be deduced without considering in

detail the particular definitions of currents and forces. We simply note that all sets use the

same, physically intuitive, heat driving force, Xq = −∇T/T , as well as diffusion currents

Ja given by Eq. 9c. Since the phenomenological definition of the thermal conductivity λ

is based on the observation that in the absence of diffusion, i.e. J1 = 0, the heat current

should reduce to its canonical form, Jq = −λ∇T [19], this yields

λ =
1

T

(

Lqq +
L2

1q

L12

)

(13)

It is worth noting that, as opposed to L1q and Lqq, λ does not depend on the chosen set of

currents and forces and moreover, it assumes the above form for all the sets.
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For our calculations we adopt the ’mainstream’ choice for forces (and currents),

Xa = −T∇ (µa/T ) (14a)

Xq = −
1

T
∇T (14b)

(a = 1, 2) [18], but this selection is not in fact arbitrary. As first discussed by Erpenbeck [18],

the ’mainstream’ set is preferable for molecular dynamics calculations since its corresponding

microscopic currents only depend on microscopic quantities easily available in simulations.

The other choices on the other hand require the knowledge of thermodynamic quantities

such as chemical potentials or partial enthalpies which are difficult to calculate with any

accuracy (see also below).

The microscopic currents for the ’mainstream’ set are

ja(τ) =
∑

i(a)

mi[vi(τ) − vCM(τ)] (15)

jq(τ) =
∑

i

vi(τ)

{

1

2
miv

2
i (τ) +

1

2

∑

j 6=i

Vij [rij(τ)]

}

+
1

2

∑

i

∑

j 6=i

[ri(τ) − rj(τ)]vi(τ) · Fij(τ) − HvCM(τ) (16)

where H and vCM are the enthalpy and center of mass velocity of the system, respectively.

Since vCM is set to zero in the simulations, H does not enter in fact the calculations. The

Green-Kubo relations for the heat-mass coefficients are:

Lqq(t) =
1

3V kBT

∫ t

0

〈jq(0) · jq(τ)〉dτ (17a)

L1q(t) =
1

3V kBT

∫ t

0

〈j1(0) · jq(τ)〉dτ (17b)

L12(t) =
1

3V kBT

∫ t

0

〈j1(0) · j2(τ)〉dτ (17c)

and {L12, L1q, Lqq} correspond to the t → ∞ limits of the above relations.

It has been sometimes remarked [20] that the ’mainstream’ set does not allow a proper

calculation of the thermal conductivity since λ as defined by Eq. 13 may result from the

subtraction of two large quantities leading to significant errors. To avoid this perceived

problem a different set of currents has been used, with microscopic heat current

j
′′

q = jq − (h1j1 + h2j2) (18)
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where h1,2 are the partial specific enthalpies. This is expected to shift most of the thermal

conductivity contributions to the first term of Eq. 13, and therefore result in a more ap-

propriate definition. We would like to remark that, if we define a time-dependent thermal

conductivity

λ(t) =
1

T

[

Lqq(t) +
L1q(t)Lq1(t)

L12(t)

]

(19)

which satisfies λ = limt→∞λ(t), it is easy to show that λ(t), similarly with λ, is also invariant

under such a change of currents. Consequently, to the extent that the thermal conductivity

is defined as usual from the long-time ’plateau’ of λ(t), using the new current Eq. 18 does

not offer any real advantage.

The molecular dynamics calculation of the transport coefficients relies on Eqs. 6 and

17, whose integrands are easily calculated during simulations. We have performed such

calculations for the systems described in Table 1 and also the reference (pure solvent) sys-

tem. The units for viscosity and thermal conductivity have been chosen (mkBT )1/2/σ2 and

(k3
BT/m)1/2/σ2, respectively; the time unit is t0 = σ(m/kBT )1/2. In these units we find that

the reference system has viscosities η0 = 1.11, ζ0 = 0.21 and thermal conductivity λ0 = 4.87.

To provide an intuitive connection to the often studied hard sphere system we also estimate

for the reference system a mean free time between ’collisions’ of τ ' 0.035.

The autocorrelation functions (integrands) corresponding to the shear viscosity - Eq. 6a,

bulk viscosity - Eq. 6b, and thermal conductivity - Eqs. 14a-c, are shown in Figs. 1-

5 (normalized by their t = 0 values) for the reference system (where applicable) and the

colloidal system with the largest size ratio, σc/σ = 15. One interesting feature of the shear

and bulk viscosity integrands is that they are largely independent of the mass ratio mc/m,

even when it varies by three orders of magnitude. This feature also extends to the transport

coefficients themselves; as shown in Fig. 6 the shear viscosity of the colloidal system with

mc/m = 1000 appears to be largely similar with that of the mc/m = 1 system. Despite

the fairly small colloidal ’volume fraction’ the time-dependent shear viscosity η(t) exhibits

for both σc/σ = 15 systems a pronounced early times peak, corresponding to a significant

viscoelastic response [14]. This effect appears much reduced when the diameter ratio is

only slightly smaller, σc/σ = 10 - Fig. 6. The same behavior is also observed for the bulk

viscosity - Fig. 7.

The heat-mass autocorrelations - Figs. 3-5, behave qualitatively very different from the
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viscosity ones as a function of the mass of the colloidal particles. We note for example that

they exhibit strong oscillations for light colloidal particles, i.e. for mc = m, and a much

smoother character for heavy ones, i.e. for mc/m = 1000. The thermal conductivity λ(t)

itself reflects these differences both at early times and as t → ∞.

In the following we would like to compare the MD results for η, ζ and λ with available

theories for transport in suspensions. The prediction of the transport properties of the

present model colloidal suspension can proceed in principle along two different paths. The

first path views the suspending liquid as a structureless matrix (continuum) and the colloidal

particles as ’impurities’ (or ’dispersed phase’) with well defined properties distinct from those

of the matrix. Then, by evaluating the response of the system to small, macroscopically

applied fields, e.g. large scale temperature gradients or imposed shear flows, the equivalent,

effective transport properties of the system can be determined (see, for example, Refs.

[21, 22]). This method has a long history and is commonly known as effective medium theory

(EMT). It has been successfully applied to both liquids and solids containing ’impurities’

which are large compared to any inherent matrix structure and sufficiently far away from

each other , i.e. dilute. The predictions of these theories typically depend only on the volume

fraction φ occupied by the dispersed phase [23], as well as ’matrix’ and ’dispersed phase’

properties. For dilute enough systems the φ dependence is with a good approximation linear.

When applied to the present case, where the colloidal particles considered are both ’solid’

and thermally ’insulating’, the transport coefficients will therefore be functions of the liquid

’matrix’ properties alone, arguably at the same pressure and temperature. Such relations

have been in use for more than a century, and yield for the suspension viscosity [19, 21, 24],

ηeff = η0(1 +
5

2
φ) (20)

(Einstein’s result for the viscosity of a dilute suspension), while for the thermal conductivity

[22]

λeff = λ0(1 −
3

2
φ) (21)

For the bulk viscosity the only similar result that appears to be available [25] suggests

that there is no contribution to the effective bulk viscosity to first order in φ. Considering

the above relations, the application of EMT to the present system would therefore seem

to be straightforward and require only the value of the volume fraction φ occupied by the

impurities, i.e. colloidal particles. Unfortunately this value is rather ambiguous when the
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modeling is done at the microscopic level, particularly when the size of the impurities is

comparable with the size of the fluid particles, as is the case here. The problem is that EMT

interprets 1−φ as the volume fraction occupied by the fluid matrix, which is itself equivocal

and can be defined as either 1− φc, or perhaps better for small enough volume fractions φc,

as 1 − φ′c, where φ′c = φc(1 + σ/σc)
3 [10]. Although the difference between φc and φ′c is

not completely negligible, and we quote effective medium theory predictions corresponding

to both of them, this does not affect our conclusions.

The second, conceptually different treatment of transport in suspensions regards the

system as a binary fluid mixture, i.e. it considers its microscopic, particle character and

its detailed interparticle interactions. While no fully microscopic theory for the transport

coefficients of either simple fluids or mixtures is available, the Enskog theory (ET) for the

hard sphere fluid has proved to be successful in a significant thermodynamic domain [26],

and with suitable modifications has been shown to be applicable to other relevant simple

fluids [27, 28]. The corresponding theory for hard sphere mixtures has also been rigorously

derived [29], and tested using MD simulations for a number of relevant cases [18, 30, 31].

Although the binary mixture studied here is modeled by ’soft sphere’-based potentials and

not hard spheres, we employ a simple scaling relation to estimate the relative values of the

mixture transport coefficients with respect to those of the reference system at the same

pressure and temperature, i.e.

Ξ(σ, σc, φ, φc, m, mc)/Ξ0(σ, φ0, m) = ΞET (σ, σc, φ, φc, m, mc)/ΞET0(σ, φ0, m), (22)

where Ξ stands for η, ζ or λ, and 0 denotes the reference (pure solvent) system. The Enskog

theory hard sphere results (denoted above by ET0) are well known [26], while the Enskog

mixture theory relations can be found in [29]; they are too complicated to be meaningfully

quoted here. We used the second Enskog approximation [29] and tested our numerical

implementation against the values quoted in [31].

We now proceed to compare the MD simulation results for shear and bulk viscosities

and thermal conductivity with the predictions of these two theories - see Table 2. (We

note first that the quoted MD values carry statistical error bars of approximately 10-15%,

which should also encompass small deviations due to the neglect of long time tails [30, 31].)

The MD calculated shear viscosity is fairly well reproduced by the effective medium theory

Eq. 20 for both large and small colloidal masses. The Enskog predictions on the other
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hand appear to deviate significantly from the MD values, particularly for the larger colloidal

particles. Surprisingly, the opposite seems to hold for the bulk viscosity, which is found

to be much larger than that of the reference system, in good agreement with the Enskog

results but not EMT. The apparent failure of EMT for the bulk viscosity may signal that the

theory needs significant corrections for ’soft’ colloidal particles, or perhaps even for standard

hard cores. The comparison of the MD values and theoretical predictions for the thermal

conductivity yields the more interesting results. For heavy colloidal particles both the EMT

and Enskog predictions appear to be in reasonable agreement with the MD simulations. On

the other hand, if the colloidal particles are light, mc/m = 1, particularly if the size ratio

is also large, the thermal conductivity is found to be significantly bigger than the EMT

prediction. In fact, for σc/σ = 15 it appears that by adding to the solvent (at constant

pressure) thermally insulating but rather small and light colloidal particles, the thermal

conductivity is significantly (' 50%) enhanced over that of the reference, pure solvent! The

Enskog theory predictions also appear to roughly reproduce this trend.

In conclusion, we performed MD calculations of the viscosities and thermal conductivity

of a model colloidal suspension with colloidal particles approximately only one order of mag-

nitude larger than the solvent molecules (“nanocolloidal” suspension). The results suggest

that, quite remarkably, the standard effective medium theory (EMT) remains well applicable

for predicting both the shear viscosity and thermal conductivity of such suspensions when

the colloidal particles have a ’typical’ mass, i.e. mc/m ∼ (σc/σ)3. For the bulk viscosity the

available EMT result fails to reproduce the calculated values, which may indicate that some

revised theory is necessary. Estimates of the transport coefficients based on the Enskog

transport theory are less conclusive, but appear to suggest that when applied to systems as

the ones studied here, the theory is rather inaccurate for the shear viscosity, although it may

remain satisfactory for the bulk viscosity and the thermal conductivity. For extremely light

colloidal particles, i.e. mc/m ∼ 1, we find a significant thermal conductivity enhancement

over the EMT predictions, which is roughly reproduced by the Enskog mixture theory. This

effect may be perhaps attributed to the solvent “stirring” action of the Brownian colloidal

particles’ motion, posited for example in [32]. However interesting, this behavior does not

appear to be of much relevance for typical, realistic suspensions, including nanocolloidal

ones or so-called nanofluids.

This work was performed under the auspices of the U. S. Department of Energy by
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TABLE I: Colloidal systems studied.

σc/σ mc/m Nc φ φc

10 1 25 0.384 0.0751

10 1000 25 0.384 0.0751

15 1 20 0.382 0.0824

15 1000 20 0.382 0.0824

TABLE II: Comparison of the shear and bulk viscosities, and thermal conductivity (top to bottom)

of the colloidal suspensions from MD simulations, effective medium theory (EMT) and Enskog

theory for mixtures. The two EMT numbers correspond to volume fractions φc and φ′c (see text).

σc/σ mc/m MD EMT Enskog

10 1 1.12 1.19-1.25 1.34

10 1000 1.16 1.19-1.25 1.59

15 1 1.15 1.21-1.25 1.54

15 1000 1.21 1.21-1.25 1.86

10 1 1.78 1 1.44

10 1000 1.95 1 1.83

15 1 1.86 1 1.71

15 1000 2.20 1 2.22

10 1 0.95 0.85-0.89 1.26

10 1000 0.85 0.85-0.89 0.91

15 1 1.52 0.85-0.88 1.40

15 1000 0.80 0.85-0.88 0.91
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FIG. 1: Shear viscosity autocorrelation function (see text) for the reference system (dashed line),

and mixtures with σc/σ = 15; mc/m = 1000 (solid line) and mc/m = 1 (dotted line).
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FIG. 2: Bulk viscosity autocorrelation function (see text) for the reference system (dashed line),

and mixtures with σc/σ = 15; mc/m = 1000 (solid line) and mc/m = 1 (dotted line).
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FIG. 3: Autocorrelation function for the L12 coefficient of mixtures with σc/σ = 15; mc/m = 1000

(solid line), and mc/m = 1 (dotted line).
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FIG. 4: Autocorrelation function for the L1q coefficient of mixtures with σc/σ = 15; mc/m = 1000

(solid line), and mc/m = 1 (dotted line).
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FIG. 5: Autocorrelation function for the Lqq coefficient of the reference system (dashed line), and

mixtures with σc/σ = 15; mc/m = 1000 (solid line) and mc/m = 1 (dotted line).
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FIG. 6: Time dependent shear viscosity (normalized by the reference system value) for mixtures

with σc/σ = 15, mc/m = 1000 (solid line), σc/σ = 10, mc/m = 1000 (dashed line), and σc/σ = 15,

mc/m = 1 (dotted line).
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FIG. 7: Time dependent bulk viscosity (normalized by the reference system value) for mixtures

with σc/σ = 15, mc/m = 1000 (solid line), σc/σ = 10, mc/m = 1000 (dashed line), and σc/σ = 15,

mc/m = 1 (dotted line).

20



0 3 6 9
0

0.5

1

t/t0

λ(
t)

/λ
0

FIG. 8: Time dependent thermal conductivity (normalized by the reference system value) for

mixtures with σc/σ = 15, mc/m = 1000 (solid line), σc/σ = 10, mc/m = 1000 (dashed line), and

σc/σ = 15, mc/m = 1 (dotted line).
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FIG. 9: Time dependent thermal conductivity (normalized by the reference fluid value) for the

mixture with σc/σ = 15 and mc/m = 1.
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